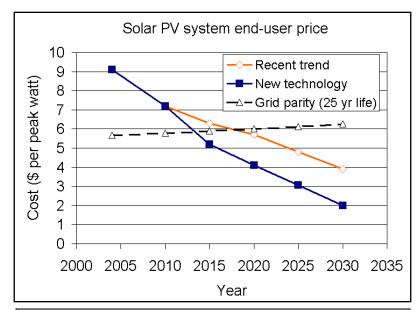
Solar Research Test Bed


Illinois Center for a Smarter Electric Grid

University of Illinois Building Research Laboratory #344

The Vision of Sustainability at UIUC

- "Environmentally sustainable construction is healthy, energy efficient and consistent with the missions and values of the U. of I. as a public research university,"
 - Stanley O. Ikenberry 12/9/09
- "We will build our campus' capacity to address the immense challenges by scoping and advancing Sustainability Laboratories. These real-world locations will address environmental, social, and economic aspects of sustainability through research, education, and outreach."
 - Robert A. Easter 2/10/10

- Photovoltaic panels are actually the longest life energy resource available today: 50 year life, 25 year warranties.
- They have the *lowest maintenance* costs of any energy technology.
- The technology is mature.
- Costs have reached parity with retail electricity, and continue to drop.

Value proposition Solar Research Test Bed

Implementation of the Solar Research Test Bed is an important part of the research scope of the Illinois Center for a Smarter Electric Grid (ICSEG). ICSEG's research mission is to support the continuing development of the Smart Grid through research that tests and validates the trustworthiness (secure, reliable, private, resilient) of new components and systems that will be required to realize the full potential of the Smart Grid, and renewable energy systems such as wind and solar are critical to realizing this vision.

The Solar Research Test Bed will allow ICSEG researchers to study in a controlled environment certain solar components, devices, and systems that underpin the performance of solar generation but may also be vulnerable to both natural and man-made forces that can compromise the trustworthiness of those systems. ICSEG researchers will be able to identify those vulnerabilities and develop solutions to assure trustworthiness. The Solar Research Test Bed will provide the research platform to test and validate these solutions before real-world commercial deployment on the Smart Grid.

The research results from this work will comprise a body of intellectual property (IP) that can find practical application through licensing and new venture creation in emerging, fast-growing markets for Smart Grid products and services.

Research Objectives Illinois Center for a Smarter Electricity Grid (ICSEG)

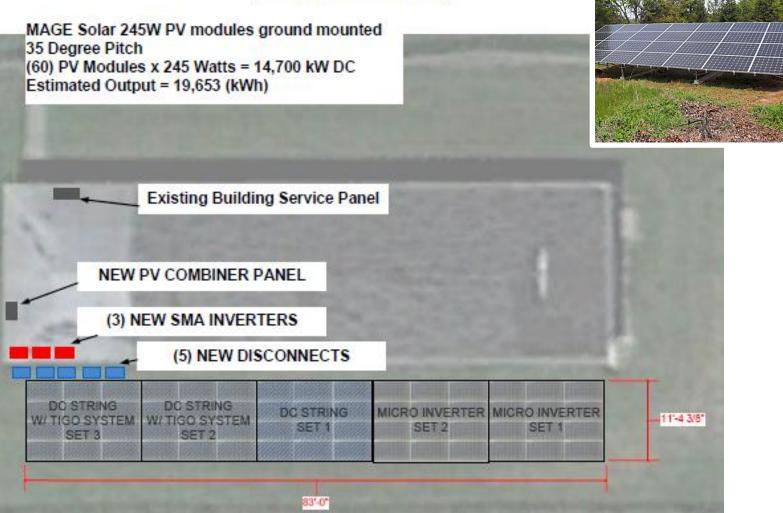
- Promote the integration of solar energy into the grid through research that supports enhanced security, reliability, and trustworthiness of solar systems in general.
- Create a solar research test bed for data collection and testing at full scale:
 - Evaluation of various inverter and microinverter approaches
 - Experimentation with partial shading and degraded panel performance
 - Evaluation of intelligent, heterogeneous loads
 - Interface to AMI test bed, including bidirectional capability
 - Experimentation with load-generation control
 - Experimentation with dynamic control strategies with locally variable cloud cover.
- Provide instrumentation to allow visualization of performance data in real time:
 - The visualization portal would be accessible over a secure web connection

Location of site

Proposed Location Plan (2011 photo) SOLAR RESEARCH TEST BED F&S, 04/09/13

View of Building 344 from SW

View of Building 344 from SW


Footprint looking west

slopes down from east to west

Layout of 60 solar panels

14.7kW DESIGN

MAGE Solar Panels

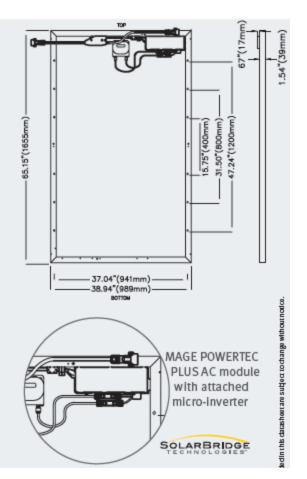
240 / 6 PL US AC PHOTOVOLTAIC MODULE

AC ELECTRICAL CHARACTERISTICS	
AC Output (Min/Nom/Max)	211V / 240V / 264V
Oper Freq Hz (Min/Nom/Max)	59.3 / 60.0 / 60.5
Output Power Factor	0.99 min
AC Max Cont Output Current	0.992A
AC Max Cont Output Power	238W
Max Units Per Branch Circuit	16
Max Overcurrent Protection	20 A
Total Harmonic Distortion	< 5%

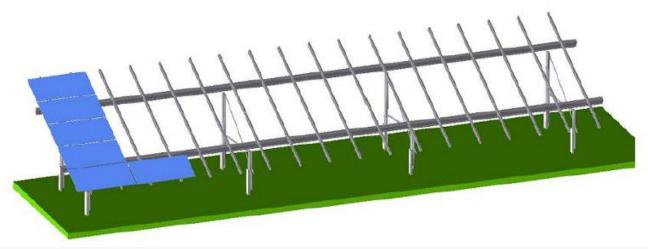
DC ELECTRICAL CHARACTERISTICS*

Maximum Power Rating	P _{mp} (W)	240
Tolerance of P _{mp}	(W)	-0/+5

* STC @ 25° C, 1000 W/m², AM 1.5

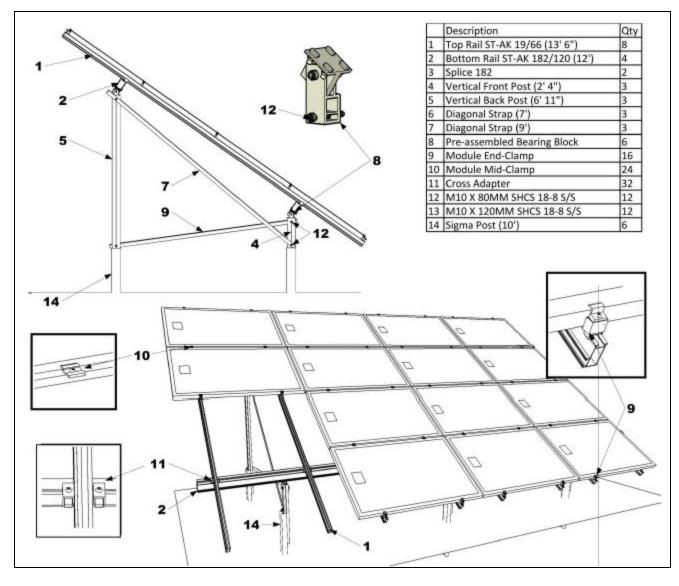

				_
1110	H N I ("A		
1 6 6		-	1.0	

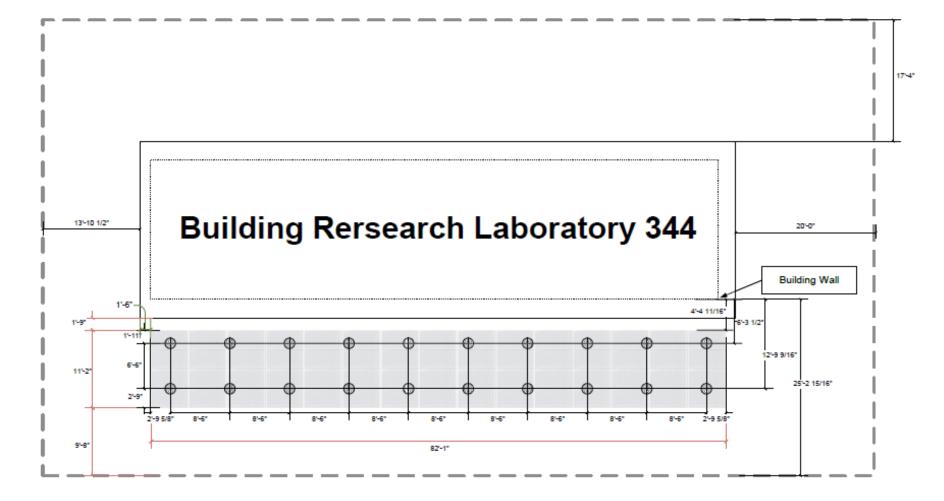
Number of Cells (Matrix)	60 (6 x 10)
Solar Cell Type	polycrystalline
Solar Cell Size (mm)	156 x 156
Solar Cell Size (in)	6 X 6
Dimensions (Lx Wx H mm)	1655 x 989 x 39
Dimensions (LxWxHin)	65.15x 38.94 x 1.54
Weight (kg)	21.3
Weight (lbs)	47.0
Module Efficiency (%)	14.7


THERMAL CHARACTERISTICS		
NOCT	(99)	+46 ±
Temperature Coefficient	I _{sc} (%/ ℃)	+ 0.05
Temperature Coefficient	V _{0C} (%/°C)	- 0.32

	- A. (- 7 - 7	
Temperature Coefficient	V _{0C} (%/°C)	- 0.32
Temperature Coefficient	P _{mp} (%/°C)	- 0.43

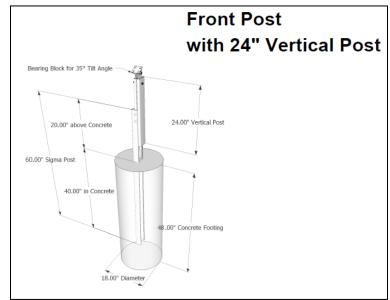
2

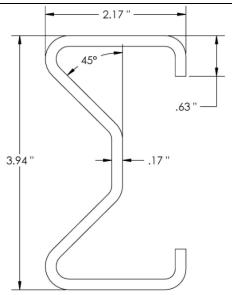

Ground-Mount Racking System


Technical Data

Ground mount
The mounting structure will be designed in accordance with the 2006 International Building Code including wind, snow and seismic loading.
Framed
In rows or columns
Portrait (vertical) or landscape (horizontal)
15 to 35 degrees in North-South direction
Maximum of 6 degrees in East-West direction
MAGE SYSTEMTEC mounting systems and component parts are designed in accordance with the 2006 International Building Code.
Extruded aluminum 6063-T6
Stainless steel
Galvanized steel
Aluminum
10-year material warranty

Ground-Mount Racking System




Layout of concrete footings

Concrete footing design details

Five strings each with 12 solar panels

String A: 12 solar panels

- SolarBridge microinverter integrated on each panel (12)
- Power Line Carrier to SolarBridge Power Manager gateway (1)

String B: 12 solar panels

- SolarBridge micro-inverter integrated on each panel (12)
- Power Line Carrier to SolarBridge Power Manager gateway

String C: 12 solar panels manager . t. Bas + P

• All panels connected in series Standard string-level inverter located in BRL #344 (1)

1 SolarBridge gateway box

String D: 12 solar panels

- All panels connected in series
- Standard string-level inverter located in BRL #344 (1)
- DC optimizer on each panel (12)

String E: 12 solar panels

- All panels connected in series
- Standard string-level inverter located in BRL #344 (1)
- DC optimizer on each panel (12); future swap-out to custom device

Power run to BRL #344

gateway

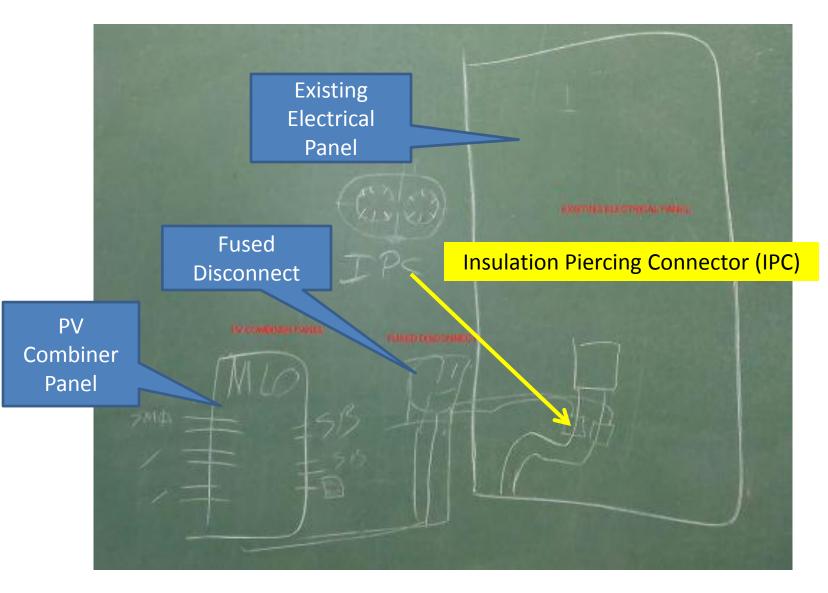
boxes for

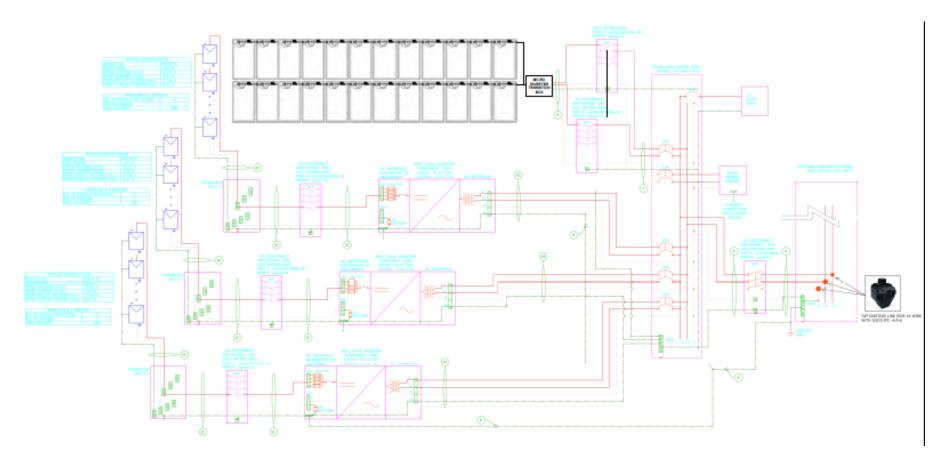
C.D.E

System components

	SYSTEM COMPNENT SPECIFICATION			
ITEMS	DESCRIPTION	MANUFACTURE	QUANITITY	
1	PHOTOVOLTAIC MODULES	MAGE POWERTEC Plus 245/ 6 PL	60	
2	INVERTER	SMA 3000HFUS 208/240	3	
3	MICRO INVERTERS	Solar Bridge Pantheon II	24	
4	DC OPTIMIZERS	TIGO MM-2ES50	24	
5	MONITORING EQUIPMENT	Sunny Boy Web Box	1	
6	MONITORING EQUIPMENT	TIGO MMU Monitoring Unit	1	
7	MONITORING EQUIPMENT	Solar Bridge Management System	1	
8	RACKING SYSTEM	MAGE System Tec ground mount	1	

Entrance at NW corner




Electrical panel and Ethernet jacks

Combiner > Disconnect > Main Panel

Single line diagram

Solar dashboard in CSL lobby

Construction

May 15-31, 2013

