University of Illinois at Urbana-Champaign

Utilities Production and Distribution Master Plan

Agenda

- Current Status
- Utility / System Overview
- Overview of Condition Assessment
- Review of Peak Loads v. Annual Growth
- Stakeholder Involvement / Input
- Model Review / Overview
- Future Considerations

Importance of Utilities and Integrated Planning

- Master Plans are NOT a one-time Study
 - Continuously followed and adjusted with feedback
 - Periodic Comprehensive Evaluations
- For Energy, Supply and Demand Must be Integrated
 - Safe, Compliant, and Reliable Energy Delivery Imperative
 - Capital Cost, Operating Cost, and Optional Benefits / Risk must be Balanced Based on University Priorities
- Previous Comprehensive Plan Implemented ~ 2004
 - Central Chilled Water Plant 2004 (from 1997 Study)
 - Abbott North Addition 2003- 2005 (NG Combined Cycle)
 - Electrical Main Campus Sub 69 KV 2003 2004 Cut-over

• Electrical Main Campus Sub 69 KV 2003 – 2004 Cut-over

UIUC Utilities Existing Energy Systems

- Production
 - Abbott Power Plant
 - Steam
 - Electricity
 - Chiller Plants
- Distribution
 - Steam
 - Chilled Water
 - Electrical
 - Natural Gas

UIUC Utilities Existing Energy Systems

- Production
 - Abbott Power
 - Steam
 - Electricity
 - Chiller Plants
- Distribution
 - Steam
 - Chilled Water
 - Electrical
 - Natural Gas

Campus Central Utility System Advantages

Production Advantages

- Combined Heat & Power (CHP)*
- Diversity Advantages of Aggregated Loads
- Increased Reliability (N+1) at Central Plant
- Opportunity of Thermal Energy Storage
- Fuel Purchase Flexibility

Campus Central Utility System Advantages

- Building Associated Advantages
 - Production Equipment Remote from Building
 - Building Energy Conservation Allows Sharing Production Assets
 - Ability to add incremental Building Capacity
 - Large Central Production Equipment and Limited Equipment in Buildings

Peak vs. Consumption

Build infrastructure to meet peak load (fixed cost of energy)

Floorwicky Dools	00 1414/	Steam Piping	31 miles
Electricity Peak	80 1/11/1/	Electric Cable	294 miles
Steam Peak	600 kpph	CHW Pipe	27 miles
Cooling Peak	31,000 tons	NG Pipe	32 miles
		Steam Tunnel	9 miles

Consumption (variable cost of energy)

≈6 Trillion BTUs of total energy consumed

ILLINOIS UTILITIES

Implementation of Planned Strategies

- Long Term Infrastructure Commitments
 - Capital Financing
 - Compliance Permitting
 - Compliance Regulation Changes
 - Project Execution Duration
 - Energy Market Changes
 - Technology Changes

Implementation of Planned Strategies

- Infrastructure Requirements Change with Peak Demand
 - Cost Effective Solution Requires Accurate Target
 - Plan to Best Available Forecast
 - Control Demand by Following Integrated Plan

STEAM CAPACITY VS. FUTURE LOAD

Master Planning Process

- Assessment complete
- Technology research complete
- Stakeholder criteria received
- Option development and analysis in progress
- Roadmap forward in progress

Project Scope and Process

Stakeholder Concerns

- World Class Research Reliable Energy
- Financial Risk Utility Rate, Capital Expenses, Reduced State Funding, Market Changes
- Sustainability Environmental Stewardship, iCAP goals

Stakeholder Involvement and Feedback

Non-negotiable:

- Safety
- Regulatory compliance

	Facility Operations	Faculty/ Students	Administration	Auxiliaries	Research
Reliability					
Financial Risk					
Sustainability					

Groups will be contacted to provide feedback on direction

Future Considerations

- Campus space needs steady or increasing
- High reliability critical for research
- Building energy conservation
- Data Center demand
- Heat recovery and storage technology
- Renewable technologies
- Fuel Supply Risk management

Next Steps in Getting to the Plan

- Complete development of scenarios
- Stakeholder review of scenarios
- Scenario adjustments to respond to feedback
- Preliminary plan
 - Administrative review
 - Final plan

Scenarios

Scenario 1 Scenario 2

Recommendations for iCAP revision

Plan Utilities and Infrastructure Master Plan

Feedback

http://www.energymanagement.illinois.edu/index.cfm

Thank you for attending

