Feasibility Study of Solar Canopies in a University Parking Lot

Ryan Day, Marie Hubbard, Benjamin Manaugh, and William O'Brien Oct. 30 2019

- Determine economic & engineering feasibility of solar canopies in a university parking lot
- Produce a written feasibility study & a poster detailing the recreational benefits and potential environmental impacts

Background and Motivation

- University of Illinois 2050 deadline
- Lack of EV charging stations around campus
- Blue water requires massive amounts of energy, opportunity to be offset with solar canopy at E14

Scope & Schedule

Scope

- -Task 1
 - Complete with the exception of 1.4
 - Waiting on data from University Parking
- -Task 2
 - Complete
- -Task 3
 - Waiting on completion of task 1
- -Task 4
 - Starting upon completion of task 2
 & 3
 - Documenting the methodology and description of tasks as we go

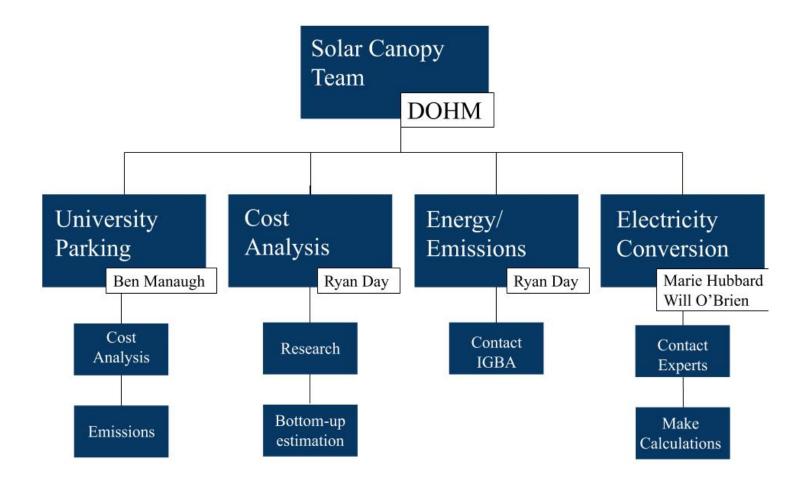
Week	-	2	m	4	2	9	7	∞	6	10	11
Dates	9/30	10/7	10/14	10/21	10/28	11/4	11/11	11/18	11/25	12/2	12/9
Important Events											
Task 1: Determine Design											
1.1 Determine best location											
1.2 Research previous projects											
1.3 Material Investigation											
1.4 Investigate Electric Car Chargers											
Task 2: Environmental Impact											
2.1 Calculate emissions reductions											
2.2 Energy production potential											
2.3 Investigate heat island effect											
Task 3: Cost Analysis											
3.1 Calculate Cost											
3.2 Calculate Revenue											
3.3 Calculate Cost offset											
Task 4: Deliverables											
4.1 Write feasibility study											
4.2 Create poster											

Preliminary Results / Analysis

- Material investigation
- Static electric car charging stations
- Heat island effect
- Parking lot location

Charging Level	Vehicle Range Added per Charging Time and Power	Supply Power		
AC Level 1	4 mi/hour @ 1.4kW 6 mi/hour @ 1.9kW	120VAC/20A (12-16A continuous)		
AC Level 2	10 mi/hour @ 3.4kW 20 mi/hour @ 6.6kW 60 mi/hour @ 19.2 kW	208/240VAC/20-100A (16-80A continuous)		
DC Fast Charging	24 mi/20minutes @24kW 50 mi/20minutes @50kW 90 mi/20minutes @90kW	208/480VAC 3-phase (input current proportional to output power; ~20-400A AC)		

Preliminary Results / Analysis


Location and Station Identification				
Requested Location	1600 South Oak Street, Champaign, Illinois			
Weather Data Source	Lat, Lon: 40.09, -88.26 1.1 mi			
Latitude	40.09° N			
Longitude	88.26° W			
PV System Specifications (Residential)				
DC System Size	10558.4 kW			
Module Type	Standard			
Array Type	Fixed (open rack)			
Array Tilt	40.09°			
Array Azimuth	180°			
System Losses	14.08%			
Inverter Efficiency	96%			
DC to AC Size Ratio	1.1			
Economics				
Average Retail Electricity Rate	0.091 \$/kWh			
Performance Metrics				
Capacity Factor	16.0%			

RESULTS	14,757,769 kWh/Year*					
Print Results	System output may range from 13,900,343 to 15,306,758 kWh per year near this location. Click HERE for more information.					
Month	Solar Radiation	AC Energy (kWh)	Value (\$)			
January	3.67	1,029,345	93,259			
February	4.27	1,052,281	95,337			
March	4.85	1,292,768	117,125			
April	5.48	1,366,532	123,808			
May	5.41	1,350,524	122,357			
June	5.86	1,390,125	125,945			
July	5.97	1,440,540	130,513			
August	6.00	1,437,846	130,269			
September	5.87	1,356,848	122,930			
October	4.80	1,222,340	110,744			
November	3.81	989,772	89,673			
December	2.96	828,850	75,094			
Annual	4.91	14,757,771	\$ 1,337,054			

2018 AASHE report: UIUC emitted **383,297 metric tons** of carbon dioxide Environmental Protection Agency: solar canopy production equivalent to reducing emissions by **10,436 metric tons** (2.7% of campus emissions;1,250 homes for a year)

Organizational Breakdown Structure

Future Work

- Continue with the cost analysis
- Continue with emissions reductions calculations
- Parking lot data challenges
- Synthesize our results
- Write the report
- Create the poster

