Welcome to the Plymouth Community-Wide EV Charging Forum

Hosted by CERTs and the Great Plains Institute

December 2nd, 2021 1-2:30pm CST

Agenda


- Welcome and introduction
- Panel with CSG, Plymouth, and Xcel Energy
 - Jody McDevitt, Sales Manager at Carbon Solutions Group
 - Amy Hanson, Deputy Works Director at City of Plymouth
 - Sarah Coon, Electric Vehicle Project Manger, Xcel Energy
 - OR Justin Durocher, Minnesota Fleet Project Manager, Xcel Energy
- Q&A
- EV Charging Resources for Communities

Carbon Solutions Group & Energy Management Solutions, Inc.

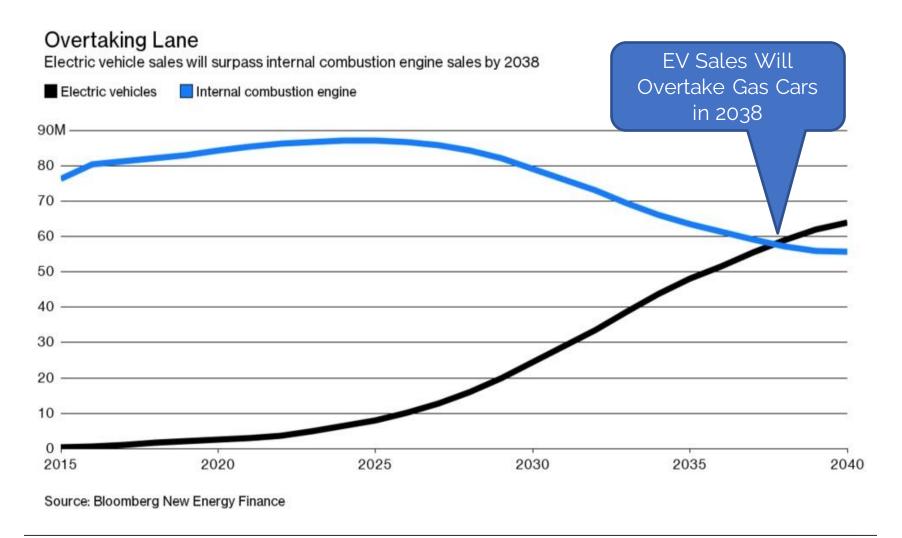
Better Energy. Better World.

About Us

Energy Management Solutions (EMS)

- Independent Provider of Energy Management Products & Services
- Identify, prioritize, and implement strategies that will conserve energy, lower utility bills, and improve clients' bottom line
- EV Charging Stations | Supply Solutions | Rebates & Incentives | Demand Solutions | Renewable Energy | Environmental Attributes | etc..
- Founded in 1998. Headquartered in Excelsior, MN
- Offices in Columbus and Tampa

Carbon Solutions Group (CSG)


- Owner/Operator of Distributed Energy Assets – Solar, Battery Storage and Electric Vehicle Charging Stations
- Aggregator and Marketer of Distributed Energy Environmental Attributes – Renewable Energy Certificates & Carbon Offsets
- Founded in 2006. Headquartered in Chicago
- Offices in San Diego and Portland

EV Trends



EV Mass Adoption

US Electric Vehicle Sales Forecast: 2019-2028

Forecast & Chart: Loren McDonald/EVAdoption.com

EV OEM Market

General Motors plans to exclusively offer electric vehicles by 2035

electric car production Hyundai Unveils EV Platform, Will Have 23 Global forecast for 2025

Electric Vehicles by 2025 Mercedes-Benz pushing to go all-Nissan wants all new car models to be electric by early electric by 2030

2030s, carbon neutrality by 2050

Hertz is buying 100,000 Teslas

Jaguar Land Rover announces electric car investment

BMW plans to double battery electric car sales this

7 New Cars Coming in Ford's Electric Vehicle Push

Kia teases new electric crossover. details seven-year EV plan

Volkswagen

significantly raises

Subaru's first electric model to drop in 2021

Tesla Model S Plaid now in production

"Fastest car ever": Musk says PORSCHE VOWS HALF OF ITS NEW LUXURY VEHICLES WILL BE ELECTRIC BY 2025

Volvo Cars to go all electric

Audi announces an acceleration of its electric vehicle investments to \$12 billion through 2025

Challenges for Property Owners

- Costs & Budget
- Driver Support
- Station Health
- Station Maintenance
 & Updates
- Reports
- Stranded Asset

".. We thought that we wanted to own and operate charging stations. We are a grocery store company; not a charging station company.."

EV Charging Program Summary

- No Costs
 - Capital
 - Operational
- Revenue Streams
 - Monthly License Fee
 - Profit Sharing
- Level 2 and DCFC
- Upgrades & Expansions

- Meet Sustainability & Carbon Reduction Goals
- Co-Branding
- Complete Turn-Key
- Electric Vehicle Leases
- Amenity to attract & retain the EV driver
- 100% No Risk

Low-Rate & Long-Term Approach

Expertise & Incentives

- Our EV infrastructure design and engineering expertise allow us to get it right the first time
 - We incorporate multiple incentives including tax credits, accelerated depreciation, and low-carbon fuel standard incentives

Aggregate Revenue

- Our forward-looking approach centers on low rates, investing in partnerships, and engaging communities
- We generate revenue from charging a small markups on electricity and leveraging our knowhow in aggregating and monetizing carbon credits

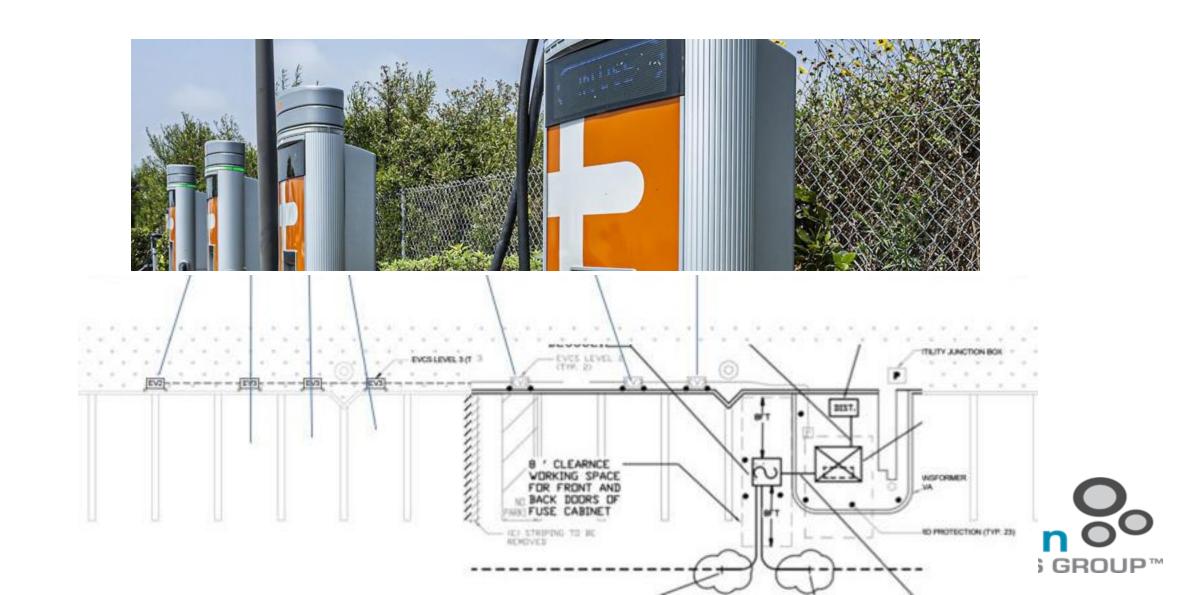
Equipment: Level 2 Charging Station

ChargePoint CT4000 Dual	Port 7.2 kW
25 Miles of Range Per Hour (RPH)	~
Electrical Input: 208/240V AC, (split phase, 240V AC, 30A per port)	✓
Electrical Output: 2 x 7.2 kW	~
Remote Communication Software for Equipment	✓
Energy Star Certified	~
Custom-Branding	~
Network to Communicate Via Cellular Network	✓
24/7/365 Continuous Remote Monitoring and Diagnostic Updates	✓

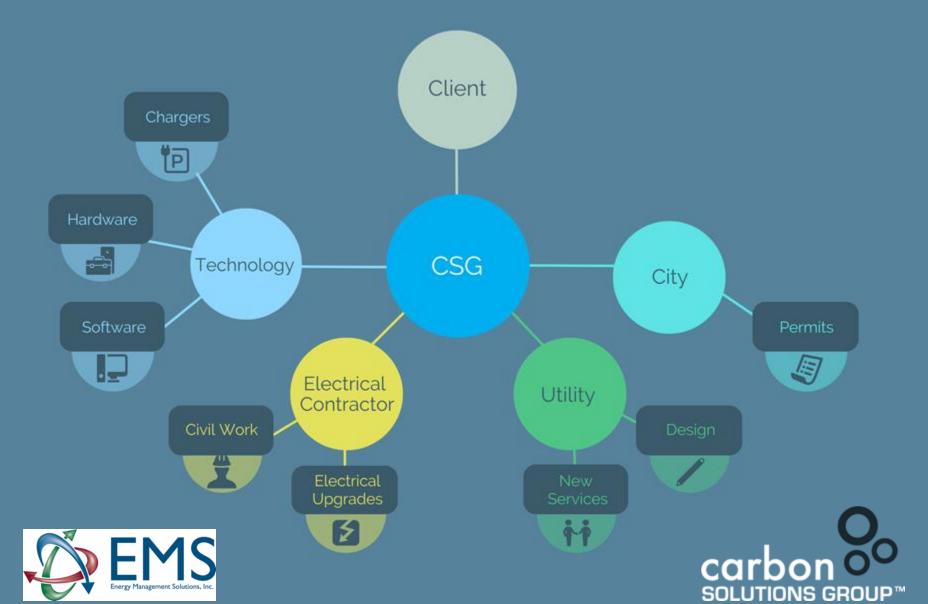
Equipment: DC Fast Charging Station

ABB Terra DC Wallbox	24 kW
80 Miles of Range Per Hour (RPH)	✓
Electrical Input: 150 - 920V AC, (single phase; 208V, 60A per port); (single phase; 240V DC, 60A per port)	~
Electrical Output: 19.5 kW/22.5 kW	✓
Remote Communication Software for Equipment	~
Energy Star Certified	✓
Custom-Branding	✓
Network to Communicate Via Cellular Network	✓
24/7/365 Continuous Remote Monitoring and Diagnostic Updates	✓

• Pedestal mounted option available*


Equipment: DC Fast Charging Station

ChargePoint CPE250 6	2.5 kW
250 Miles of Range Per Hour (RPH)	✓
Electrical Input: 150 - 920V DC (three phase 408/277V	~
Electrical Input: 62.5 kW (400V AC, 3-phase, 96A, 50 Hz 480Y/277V AC, 3- phase, 80A, 60 Hz)	~
Remote Communication Software for Equipment	~
Energy Star Certified	In process
Custom-Branding	✓
Network to Communicate Via Cellular Network	~
24/7/365 Continuous Remote Monitoring and Diagnostic Updates	✓



EV Charging Design

CSG Project Management

Recent work with Public Sector

- City of Grand Terrace | Completed project with rebates. Level 2 and DC fast charging stations.
- City of Boulder | Current project with rebates. DC fast chargers
- County of San Diego | Current project. No rebates. DC fast chargers
- City of Anaheim | Current project. No rebates. DC fast chargers
- **City of Palm Springs** | Awarded contract. DC fast charging stations per site. 15 sites total. Potential rebates available.
- **City of Oakland** | Awarded contract. DC fast charging stations in disadvantaged communities. Potential for community rideshare opportunity with fleet vehicles provided by CSG.
- **City of Plymouth** | Current project with rebates. Level 2 and DC fast charging stations across 14 sites. Fleet vehicles provided by CSG.

Development Timeline

Phase	Weeks
License Agreement	2 - 8
Draft Design & Engineering	2 - 4
Utility Design	4 - 16
Permitting	4 - 16
Construction	4 - 8
Start to Completion	20 - 48 weeks

Additional Questions

Jody McDevitt
Director of Sales
Energy Management Solutions, Inc,
612-503-7169 mobile
jmcdevitt@emsenergy.com

City of Plymouth, MN

Overview of Plymouth Program

No Cost -- No Risk

Avoids a potential \$2.0 million Reduce staff time on implementing internal program

Revenue Driving

Monthly Lease Payments
Profit Sharing

Provide EV Charging Stations

115 parking stalls14 different city locations

Additional fleet vehicles

3 - 2019 Nissan Leaf

Potential Revenue:

Years: 1-5

Charger Type	Number of Charging Stations	Monthly License Fee	Annual Fixed Revenue	Bonus @ 20% Utilization	Total Annual Revenue
L2	38	\$10	\$4,560	\$8,550	\$13,110
DCFC 24 kW	9	\$12	\$1,296	\$3,375	\$4,671
DCFC 180 kW	10	\$49.7	\$5,964	\$7,500	\$13,464
Total	58	\$71.70	\$11,820	\$19,425	\$31,245

Years: 6 – 10

Charger Type	Number of Charging Stations	Monthly License Fee	Annual Fixed Revenue	Bonus @ 20% Utilization	Total Annual Revenue
L2	38	\$20	\$9,120	\$8,550	\$17,670
DCFC 24 kW	9	\$25	\$2,700	\$3,375	\$6,075
DCFC 180 kW	10	\$100	\$12,000	\$7,500	\$19,500
Total	58	\$145	\$23,820	\$19,425	\$43,245

Total EV Charger Program Savings

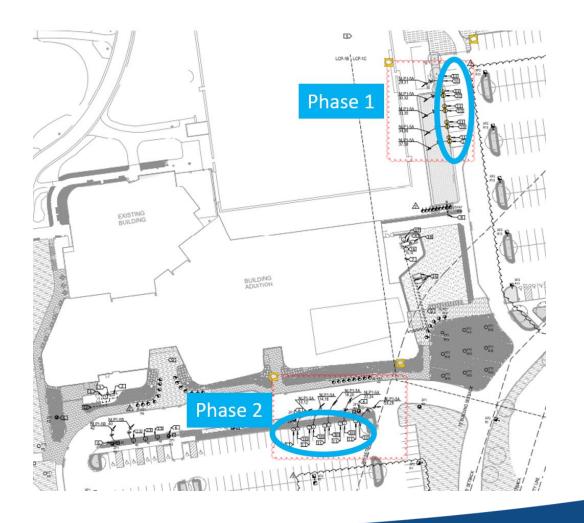
20 Year Savings

Years	Description	Р	er Year	Tot	tal Savings
1-5	EV Charger	\$	31,245	\$	156,225
6-20	EV Charger	\$	43,245	\$	648,675
1-5	3 Lease Car	\$	14,400	\$	72,000
Total 20 Years				\$	876,900

Plus the avoided cost of Chargers estimated at \$2,000,000

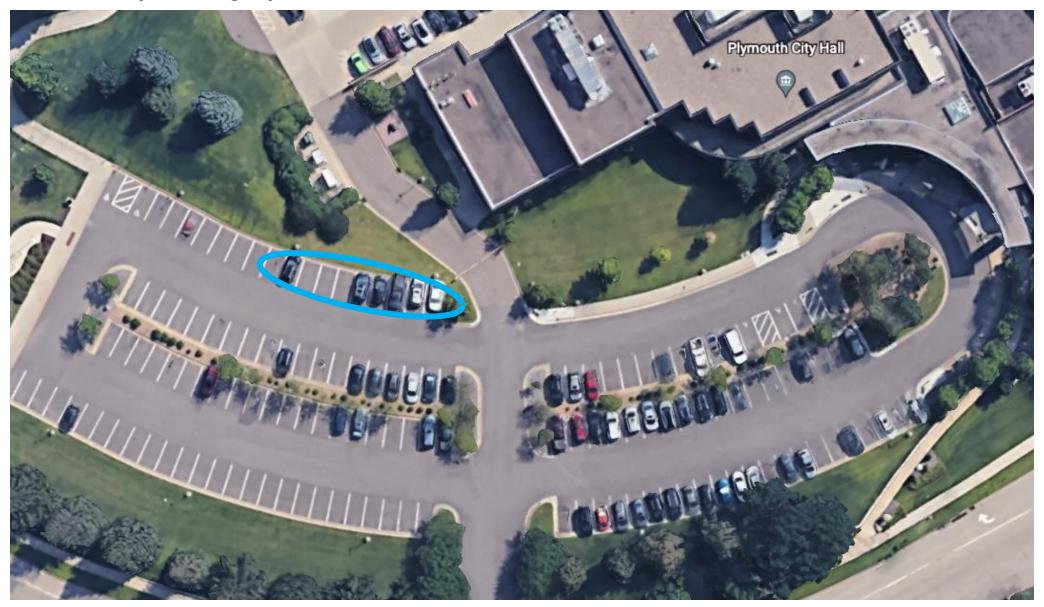
Forecasted Expenses:

Plymouth Ar	nual E	V Charge	er Costs			Utilization Rate				7.5%		
8/10/2021												
								Annual	Cost	ts		Est. Install
Location	L2*	L2 kW	DC	DC KW	Utilization	Cloud/Network	W	arranty	Ele	ctric Costs	Total	Cost
Community Center**	10	14.4	0	0	7.5%	\$ 3,290	\$	8,170	\$	30,574	\$ 42,034	\$ 212,000
Total	10	144	0	0		\$ 3,290	\$	8,170	\$	30,574	\$ 42,034	
*This represents one L2 D	ual Port unit.	This has two 7.2	kW power sourc	es for each	of the port	s.						
**Assumes 5 Level 2 char	gers (dual po	orts) at each of the	e two phases									
Note: If CSG takes these o	ver, Plymout	th will receive an e	estimated \$10,00	00 of revenu	ue each year	(Community Cen	er Or	ıly)				
Lead Time												
Туре	kW	Manufacture	Lead Time			Summary	Y	ear 1		Year 2		
L2	7.2	ChargePoint	4 Weeks			Network Fees	\$	3,290	\$	3,389		
DC	62.5	ChargePoint	4 Weeks			Warranty	\$	8,170	\$	8,415		
DC	24	ABB	16 Weeks			Electric Costs	\$	30,574	\$	30,574		
						Total	\$	42,034	\$	42,378		
Electric Rates												
Electric Rates	\$/kWh	\$/kW Summer	\$/kW Winter	Average								
On Peak	\$ 0.04855	\$ 14.79	\$ 10.49	\$ 11.57								
Off Peak	\$ 0.02341											
Riders (Est)	\$ 0.03000											
FCA	\$ 0.0050											
Estimated Average Rate	\$ 0.0760		\$ 11.92									



Considerations when determining locations

Proximity to the entrance
Utility Location
Required Power Needs
Utility Incentives
Demand Rates


Concerns that were mentioned

Taking prime locations
Struggles with snow removal
Damage to the chargers

City Hall - 10 parking spaces

Ice Center - 10 parking spaces

Plymouth Creek A & B - 10 parking spaces

Xcel Energy

OUR COMPANY-WIDE EV VISION

1.5 MILLION EVs

On the road in the areas we serve by 2030, replacing gas-powered models

That's 20% of all vehicles, a 30-fold increase in EVs

\$1 BILLION

In customer fuel savings annually by 2030

An EV would cost \$700 less per year to fuel than a gaspowered car

\$1 OR LESS PER GALLON

To drive an EV when charged with Xcel Energy's low, offpeak electricity prices

5 MILLION TONS OF CARBON EMISSIONS

Eliminated annually by 2030 with our clean energy

That's about **3 tons of carbon** reduction per vehicle

MINNESOTA EV HOME CHARGING PROGRAMS

EV Accelerate At Home (MN) provides customers with a Level 2 charger that we install and maintain. Overnight EV charging billed at lower cost per kWh

- Rent: Monthly fee of ~\$17 on existing Xcel Energy bill with no upfront cost, lifetime warranty/maintenance for charger a long as customer participates
- **Buy:** ~\$7/month, ~\$770 upfront, 3-year standard OEM warranty

<u>Time of Day Separate Meter (MN)</u> requires customer investment in separate meter, \$4.95/month service charge, with a lower cost per kWh for overnight EV charging. Good option for ~10% of customers.

^{*}Only available to Xcel Energy electric customers

FLEET ELECTRIFICATION ADVISORY PROGRAM (FEAP)

Fleet Electrification Advisory Program

Analytics and Advisory Services for Vehicles and Infrastructure

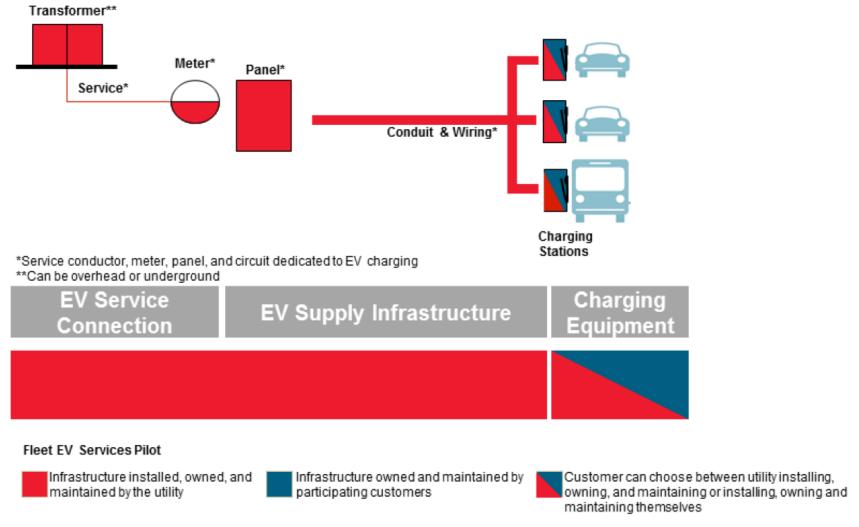
Xcel Energy is partnering with a fleet analytics company to help customers:

- Understand fleet needs and highlight opportunities for electrification
- Collect detailed data of fleet vehicle usage on a day-to-day basis
- Assess which EVs can support existing driving patterns
- Develop infrastructure options and make recommendations on charging locations
- Analyze economics and make recommendations based on fleet needs (including rate options)

© 2020 Xcel Energy 35

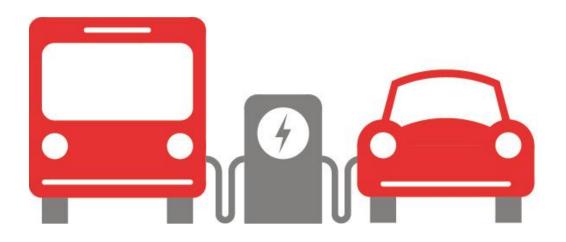
MINNESOTA EV SERVICE PILOT PROGRAMS

Program Goal


Goal

Provide commercial customers a convenient, affordable way to support infrastructure needed to charge electric transit vehicles and fleets

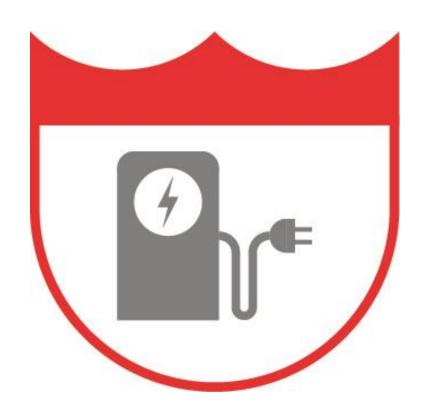
Approach


Reduce up-front cost of make ready-infrastructure

What is make-ready infrastructure?

Fleet EV Service Pilot

Installation of make-ready charging infrastructure



Xcel Energy is helping fleet operators transform their fleet to electric vehicles:

- Eligible customers within local, state, and other public sector or non-profit
- Provide make-ready infrastructure and charging equipment options.
- Installation services and payment options.
- Access to our low-cost EV charging time-ofuse rate.
- \$14.4M budget over 3-year period
 - Open until July 2022

Public Charging EV Service Pilot

Installation of make-ready public charging infrastructure



Xcel Energy is increasing access to onsite public charging for electric vehicles:

- Installation of at least one DC fast charger at project sites
 - Within a "high use location"
- XE provides make-ready infrastructure
- Installation maintenance, post-installation
- Access to our low-cost EV charging time-ofuse rate.
- Upfront technical assistance.
- \$9.2M Budget over 3-year period

MULTI-FAMILY HOUSING PROGRAMS

Installation of make-ready public charging infrastructure

Xcel Energy is increasing access to on-site multi-family housing charging for electric vehicles:

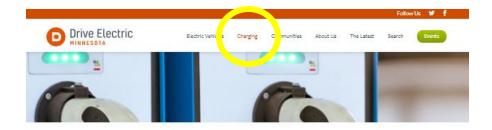
- Shared Parking Site Host Provided Equipment
 - EVSI & EV Advisor
- Shared Parking Full Service
 - EVSI & EV Advisor
 - Xcel Energy Provided Charging Equipment
- Assigned Parking Full Service
 - EVSI & EV Advisor
 - Billing Individual Drivers
 - Xcel Energy Provided Charging Equipment

Learn more by...

Visiting the Fleet <u>website</u> or Public Charging <u>website</u>:

-Contact our team by completing an intake form: https://mn.my.xcelenergy.com/s/business/ev/interest

Do you work in the clea STITUTE


EV Charging Resources

The Drive Electric MN website has toolkits and guides for purchasing a charger, choosing a site, and more!

The new Infrastructure bill will bring \$68 million to Minnesota for EV charging infrastructure.

VW settlement: We are currently in phase two, look out for EV and charging opportunities to come on MPCA's VW website.

Charging Electric Vehicles 101

Charging an electric vehicle (EV) is like filling up a conventional vehicle with gas, except the gas station is a charging station, and the fuel is electricity.

It couldn't be simpler to charge your EV-we'll help you break it down.

CHARGING SPEEDS

Level 1 charging

Charging a vehicle at "Level 1" means plugging into a standard 120-volt outlet (a typical household electrical outlet). All drivers can charge their EVs at Level 1, which requires no extra equipment or installation. On average, Level 1 provides two to five miles of vehicle range per hour the vehicle is connected.

Level 1 chargers are well-suited to places where people park vehicles for a long time, such as workplaces and homes. EV drivers who typically drive 40-50 miles per day or less may find that a Level 1 charger is adequate for home charging.

Level 2 charging (J1772)

Charging a vehicle at "Level 2" means plugging into a 240-volt outlet (the same kind that powers appliances like refrigerators). On average, Level 2 stations provide 10 to 20 miles of range per hour the vehicle is connected.

Places where EV drivers will be staying for a while are great locations for Level 2 chargers. Level 3 stations offer faster charging than Level 1 chargers but are much less expensive to install than DC fast chargers. Examples of public locations include workplaces and destinations like hotels, retail centers, major attractions like zoos and parks, parks and ride lots, and public parking rampe. Residential examples include single-family homes and multi-unit develings such as apartment buildings and condominiums. Homeowners who often drive more than 40-50 miles in a day or want the option for faster charging may choose to install a Level 2 charger.

Direct current (DC) fast charging

DC fast-charging stations offer the quickest charge available, fully charging a vehicle in around 30 minutes or less, depending on several factors including how "empty" the vehicle battery is, battery capacity, and fast charger's power output. Additionally, vehicles take longer to charge in cold weather.

The higher the power output of the charger, the quicker the charge:

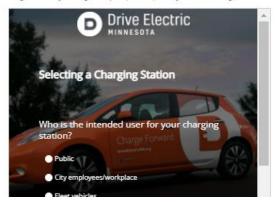
- . 50kW stations are most common, providing vehicles with 80-90 miles of range in 30 minutes.
- 190kW is becoming more common, offering increased speeds and convenience.
- Tesla V3 Supercharging stations with a peak efficiency of 250kW can charge a 2020 long-range Tesla Model 3 (322-mile range) about 23 percent in about five

Drive Electric Minnesota Charging Page

On this page you can find:

- Overview of charging levels
- Electric utility programs
- Charging with renewable energy
- Frequently Asked Questions

Drive Electric Minnesota Communities Tab – Charging Guidance


Finding The Best Charging Option For Your Community

CHOOSING THE RIGHT CHARGER

This guide is designed to walk you through the process of installing electric vehicle charging for public sites, fleets, and workplaces. If you are interested in installing charging in your home, contact your utility.

Choosing to install electric vehicle (EV) charging demonstrates leadership and a commitment to reducing the largest sector of greenhouse gas emissions in the United States. This tool is designed with communities in mind, but anyone who wants to install EV charging will learn from the information provided.

This guide will walk you through the major steps and help inform your decision-making process

On this page you can find:

- Survey monkey to help determine what kind of charger you should get
- Siting considerations (Prezi)
- The Guide to Purchasing an EV Station
- Assorted Checklists

Guide to Purchasing Chargers

Guide to Purchasing an EV Charging Station

Purchasing an electric vehicle (EV) charging station can be intimidating, given the wide variety of options. With this guide, you'll have the information needed to take steps toward purchasing a station, including common station features to consider, where to buy, and funding opportunities.

COMMON STATION FEATURES

The most basic charging station is a Level 2, or dumb charger, that lacks data tracking, payment collection abilities, and numerous other features, and is less expensive (~\$400; unit only). Smart chargers offer a variety of features and come at an additional cost (~\$600-700 for residential application Level 2; \$1,000-\$2,000 for commercial grade Level 2). The third option is a DC fast charger, which can cost \$40,000 for the unit.

FEATURE	DESCRIPTION	APPLICABILITY

		Smart Residential Level 2	Commercial Level 2	DC Fast Charger
Advertising Capabilities	Generate additional revenue by using the display screen for third-party ads.		Some	Some
Beacon Light	Increase visibility at the station, especially at night; reduce vandalism.		Some	Some
Access Management	Control use through apps, radio frequency identification, or other hardware and software features.	Some	x	х
App-Based Payments	Accept payment via a network-specific app. Less expensive than installing a credit card swipe but requires a network membership to operate.		x	х
Credit Card Swipe/ Chip Reader	Accept payment via a credit card swipe or chip reader. More expensive to install but does not require a network membership to operate.		x	х

This will guide you through topics to consider when purchasing an EV charging station such as common station feature to consider, where to buy, and funding opportunities.

Link

Cooperative Purchasing

State Contract

https://mn.gov/admin/government/purchasing-contracting/

Formerly National Joint Powers Alliance (NJPA)

•https://www.sourcewell-mn.gov/cooperative-purchasing/how-it-works

Drive Electric Minnesota Communities Tab – Resources

Educate your Community

ELECTRIC VEHICLE TOP 10

 Here are ten key electric vehicle (EV) messages designed to help you educate people in your community about the benefits of EVs and talk through perceived berriers. While not intended to serve as a public handout, this long-form textual document is useful for anyone who wants to start digging into the world of EVs.

Download the EV Top 10-

THE TOP FIVE THINGS TO KNOW ABOUT ELECTRIC VEHICLE BATTERIES

As electric vehicles (EVs) become more popular, many questions have surfaced regarding their batteries, environmental impact, and ethics. There's no doubt
that the increasing demand for EVs will increase the demand for components that make up the vehicles, like batteries. The following talking points address
common questions surrounding the impact EV batteries have and identify progress being made in this space. Each talking point is followed with references
from studies and articles for those that want to dive deeper.

EV Batteries Top Five-

ELECTRIC VEHICLE CONTENT SHARING KIT FOR COMMUNITIES

Content needed to get you started sharing information and resources about electric vehicles with your community. You can cut and paste information and
resources onto your website, your newsletter, and use it in a press release to local media. You should customize the content to include activities your city is
doing, too.

Electric Vehicle Content Kit -

On this page you can find:

- Information to help communicate about EVs to your community
- EV quizzes that are fun to use with social media to engage your community
- The Guide to Purchasing an EV Station
- Assorted Checklists

EV-Ready Communities Pilot Program

- Technical assistance and certification pilot program
- Will support Tribal Nations and cities to achieve their EV-readiness goals
- Six main categories of action:
 - EV policy, goals, and metrics
 - Regulation
 - Utility engagement
 - Education and incentives
 - Public sector leadership
 - Shared mobility
- Launching in early 2022

Better Energy. Better World.

THANK YOU

Diana McKeown

Metro CERT Director

dmckeown@gpisd.net