Filtration Impacts: Assessing Water Quality in Varied-Age Buildings

5/6/2024 Group 4 Aaron Leshuk-Morita, Matt Wingen, Jackson Moore, Issa Fouani

[1] Bhattacharyya, Amrita, and Alex Chang. "New Campus Instructional Facility Opens for Fall Semester." The Daily Illini, 31 Aug. 2021, dailyillini.com/news-stories/2021/08/31/campus-instructional-facility/.

21 Cotabustadmin "A Priof History of LILLC" Purpham 210, 0 June 2022, hurnham 210, apm/a brief history of ujua/

[2]

Overview

- Problem Statement
- Research Questions
- Methodology
- Sample Results
- Design Results
- Conclusions
- Future Investigations

Problem Statement – Background

Mahomet Aquifer

- Source of drinking water for over 500,000 residents in Illinois, serving Champaign, Urbana, Savoy, and other communities
- As of 2021,18 PFAS were tested and all were non-detect
- High hardness contributes to higher alkalinity; PH resilient
- o Excellent quality despite certain areas with high ammonia, arsenic, and

organics

Table 9. (concluded)

Well	Cu	РЬ	Ni	Zn	Co
93-24B	<0.002	<0.014	<0.008	0.039	<0.004
92-3A	<0.002	<0.014	<0.008	0.040	<0.004
93-18A	<0.002	<0.014	<0.008	0.355	<0.004

[1] Mahomet aquifer. City of Champaign. (2019, January 23). https://champaignil.gov/public-works/find-a-service/mahomet-aquifer/

Problem Statement – Motivation

Metals Commonly Found in Drinking Water

- Lead and Copper commonly found in US drinking water
 - Especially in pre-1986 plumbing systems
- UIUC drinking water could have unchecked amounts
 - Check new and old construction for water quality
 - Filtered and unfiltered
 - Look for correlation between building age and metal levels
 - Look for effectiveness of filter use
- \circ EPA guidelines:
 - Copper MCLG: 1.3 mg/L
 - Lead MCLG: 0 mg/L

Problem Statement – Design Challenge

Point of use water quality sampling and treatment

- Primary goal
 - variations in water quality in different age campus buildings?
 - improved drinking water quality?

- End goal
 - Inform campus of finding

Client – iSEE

Mission & Purpose

- o Established in 2013 under Research & Innovation office
 - Provides research on worldly sustainability efforts
 - Applies new practices to campus
- Sustainability in agriculture, energy, air, water, infrastructure
- \circ $\,$ Includes research sector in drinking water $\,$
 - Mostly treatment & microorganism elimination
 - No specific focus in presence of metals

Research Questions

Null hypothesis 1:

There is no significant difference between lead/copper concentration based on presence of POU filter

Null hypothesis 2:

There is no significant difference between lead/copper concentration based on building

Alternate hypothesis 1:

There is a significant difference between lead/copper concentration based on presence of POU filter

Alternate hypothesis 2:

There is a significant difference between lead/copper concentration based on building

[3] "Quick Guide to Drinking Water Sample Collection." EPA, United States Environmental Protection Agency, Sept. 2016, www.epa.gov/sites/default/files/2015-11/documents/drinking water sample collection.pdf

Scope

Sampling

- Campus Instructional Facility (CIF), completed 2021^[1]
- Illini Union, completed 1941^[2]
- Samples from high traffic areas
- 11-4pm

Overview

- 48 Samples
- 24 per building
- Blanks incorporated in ICP-MS (DI water)^[3] Individual Sampling Event: 1st & 2nd (1L)
- flush taken consecutively from the same station

EPA Benton Harbor data report flushing illustration. [4]

Sampling Matrix

Building	Sample Type	Sampling Locations	Samples Collected per Location	Total 1L Samples
CIF	Filtered	3	4	12 Filtered,
	Unfiltered	3	4	12 Unfiltered
Union	Filtered	2	6	12 Filtered,
	Unfiltered	3	4	12 Unfiltered

Note: 24 of 48 measurements were performed on an instrument that lacked the sensitivity to measure samples at such low concentrations.

CIF Map

Building Layout. 15 June 2021. Campus Instructional Facility, University of Illinois Urbana-Champaign, https://cif.illinois.edu/building-layout/. Accessed 1 Apr. 2024.

Union Map

ILLINI ROOM E

SOUTH LOUNCE

BOUTH TERRACE

F&S Filtered Sample Locations

Building	Asset Label	Change Frequency	Last Change
Union	0023-EWC-001	Semi-Annual	8/21/2023
Union	0023-EWC-002	Semi-Annual	8/21/2023
CIF	1545-EWC-004	Annual	4/17/2023
CIF	1545-EWC-006	Annual	4/17/2023
CIF	1545-EWC-008	Annual	4/17/2023

Preliminary Free Chlorine Sampling

Γ

• Samples taken from Union (5) and CIF (6)

- 3 filtered, 3 unfiltered at CIF
- 2 filtered, 3 unfiltered at Union
- Free chlorine tests done on all
 - DPD free chlorine powder pillow added
 - DR 890 colorimeter detects Cl₂ by magnitude of color change
- Verifies that filter is actually present at locations

• Results: filter presence confirmed

- Filtered range: 0.06-0.21 mg/L as Cl₂
- \circ Unfiltered range: 1.69-2.16 mg/L as Cl₂

• 3/19 lab comparison

- \circ Filtered range: 0.00-0.61 mg/L as Cl₂
- Unfiltered & treated range: 1.31-2.00 mg/L as Cl₂

Preliminary Free Chlorine Sampling

[1] "National Primary Drinking Water Regulations." EPA, United States Environmental Protection

Agency, January 2, 2024, https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic

Analysis

Ι

- Group preparation of samples for ICP-MS
- TA assistance with standards and calibration curve
- Compare concentrations of Pb and Cu from different sources

Filtered vs unfiltered free chlorine concentrations. [2]

[1] Wilschefski, Scott C, and Matthew R Baxter. "Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects." The Clinical Biochemist. Reviews, U.S. National Library of Medicine, Aug. 2019, www.ncbi.nlm.nih.gov/pmc/articles/PMC6719745/#:~:text=Inductively%20coupled%20plasma%20mass%20spectrometry%20(ICP%2DMS)%20is%20an,trace%20levels%20in%20biological%20fluids.

CIF Results (Copper)

Ι

CIF Results (Lead)

Union Results (Copper)

Union Results (Lead)

2 Tailed, 2 sample T-test

- We performed 4 of these tests at 95% confidence level and t-critical of 2.07
- Requirements: Independent data values, SRS, normal distribution, standard deviations must be close

Distribution of Copper conc. in 12 Filtered Samples

σ = 21.3 ppb

 σ = 21.7 ppb

2 Tailed, 2 sample T-test

- We performed 4 of these tests at 95% confidence level and t-critical of 2.07
- Requirements: Independent data values, SRS, normal distribution, standard deviations must be close

Lead conc. (ppb)

 σ = 0.24 ppb

 σ = 0.35 ppb

Filtered vs. Unfiltered (Copper)

Filtered: x̄= 24 ppb, σ= 21.32; Unfiltered: x̄= 42 ppb, σ= 21.74 t= 1.988; p= 0.059

Filtered vs. Unfiltered (Lead)

Filtered: \bar{x} = 0.41 ppb, σ = 0.24; Unfiltered: \bar{x} = 0.50 ppb, σ = 0.35 t= 0.793; p= 0.437

Old vs. New Building (Copper)

CIF: x̄= 29 ppb, σ= 26.73; Union: x̄= 37 ppb, σ= 18.70 t= 0.786; p= 0.441

Old vs. New Building (Lead)

CIF: x̄= 0.33 ppb, σ= 0.195; Union: x̄= 0.58 ppb, σ= 0.335 t= 2.28; p= 0.035

Design Results - Economic Analysis

Feature	Upgrade to Filtered Fountain	Unfiltered Fountain
Initial Investment	\$2,250 - \$2,500	\$1,750 - \$2,000
Annual Filter Cost 1	\$65 - \$75 per filter (once per year)	N/A
Annual Filter Cost 2	\$130 - \$150 (if replacing filters twice a year)	N/A
Additional Benefits	Reduced free chlorine; improved taste	N/A

Bottom Line:

- No statistically significant difference in contaminant concentrations between filtered and unfiltered sources
- Zero samples over EPA maximum contaminant levels

[1] Specifications Elkay Watersentry Replacement Filter ..., www.elkayfiles.com/spec-sheets/51300c_spec.pdf. Accessed 29 Feb. 2024.

[2]EPA, Environmental Protection Agency, www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 29 Feb. 2024.

Design Results

Different Aged Buildings

- No difference in copper concentrations
- Significant difference in lead concentrations

High Quality Water

Regulation	Maximum Lead Concentration (ppb)
EPA Primary Drinking Water Standard ^[1]	15
FDA Bottled Water Standard ^[2]	5
Illinois School Requirement ^[3]	5

CIF Pb: \bar{x} = 0.33 ppb; Union Pb: \bar{x} = 0.58 ppb

[1]EPA, Environmental Protection Agency, www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 29 Feb. 2024.
[2] "Bottled Water Everywhere: Keeping It Safe." U.S. Food and Drug Administration, FDA, 22 Apr. 2022, www.fda.gov/consumers/consumer-updates/bottled-water-everywhere-keeping-it-safe.
[3] "Lead in Drinking Water." Illinois Environmental Council, 5 Feb. 2021, ilenviro.org/clean-water/lead-in-drinking-water." Illinois Environmental Council, 5 Feb. 2021, ilenviro.org/clean-water/lead-in-drinking-water/water/water/water/lead-in-drinking-water/lead-in-

Design Summary Conclusion

University of Illinois water is SAFE

[1] Bhattacharyya, Amrita, and Alex Chang. "New Campus Instructional Facility Opens for Fall Semester." The Daily Illini, 31 Aug. 2021, dailyillini.com/news-stories/2021/08/31/campus-instructional-facility/.

210 otolystadmin "A Brief History of LILLC" Burnham 210, 0, June 2022, hurnham 210, com/a brief history of ujus/

Recommendations for Future Investigations

More Samples

- Our sample size of reputable data got cut in half (24) due to ICP-MS issues
- Would have been better to analyze more samples from more buildings to be able to apply our data to other University buildings

More Older Buildings

- Engineering Hall 1894
- Altgeld Hall 1896
- Armory 1914

Filter Upgrade?

- 51300C 71300C
- 2.125" longer, .1875" wider, designed for PFOA/PFOS removal as well

[1]

Communication with the Public

Collaboration with iSEE

- Make data publically available on iSEE site
- Attach plain language summary

Flyers

- Flyers with QR codes to iSEE website
- Near drinking water sources
- Increased exposure of class findings

