Testing for Lead and Copper Levels in the University Residence Hall Water Refill Stations

Noemi Carrasco Abbey Fields Hailey Grubich Isabelle Newsom Dominika Szal

May 6, 2024

(iSEE, 2024)

Background	3
Objectives	4
Methodology	5-11
Results of Samples Analysis	12-18
Design Results	19-20
Conclusion	21
Recommendations	22

Background

- Types of water stations on campus
 - Filtered
 - Unfiltered
 - Glass filler
- 2022 survey by iSEE revealed an insight into student perceptions of filtered vs. unfiltered water
 - More than 50% of students think filtered is safer, with 83% of first-year students holding this perception
 - 56% of first year and 57% of second year students believe there is not enough convenient fountains

Glass Filling Station

Unfiltered Bottle Filling Station (iSEE) Filtered Bottle Filling Station

Ι

- Problem:
 - 35% of freshman and 51% of sophomores prefer bottled water over tap water on campus
 - iSEE created an initiative to address the use of single-use plastic water bottles on campus
- Solution: Convince students that tap water is just as safe as bottled water
 - Test lead and copper in hydrostations in the university residence halls

(CNN, 2023)

Methodology

Lead and Copper Rule: A Quick Reference Guide

Overview of the Rule		
Title ¹	Lead and Copper Rule (LCR) ² , 56 FR 26460 - 26564, June 7, 1991	
Purpose	Protect public health by minimizing lead (Pb) and copper (Cu) levels in drinking water, primarily by reducing water corrosivity. Pb and Cu enter drinking water mainly from corrosion of Pb and Cu containing plumbing materials.	
General Description	Establishes action level (AL) of 0.015 mg/L for Pb and 1.3 mg/L for Cu based on 90 th percentile level of tap water samples. An AL exceedance is not a violation but can trigger other requirements that include water quality parameter (WQP) monitoring, corrosion control treatment (CCT), source water monitoring/treatment, public education, and lead service line replacement (LSLR).	
Utilities Covered	All community water systems (CWSs) and non-transient non-community water systems (NTNCWSs) are subject to the LCR requirements.	

(EPA, 2023)

- EPA's Lead and Copper Rule created action levels for lead and copper
 - If levels are higher than these concentrations an intervention needs to take place (EPA, 2008)
- Compared our results with these action levels to see whether there is truly a concern about the water quality in UIUC university residence halls

Methodology

- The EPA health goal for lead levels is 0 ppb
- The American Academy of Pediatrics recommends water levels no greater than 1 ppb for children (Lanphear, 2016)
- Copper is a necessary micronutrient (Massachusetts Department of Environmental Protection)
- Copper levels under 1300 ppb should not cause any adverse health affects

https://www.drainservicesinc.com/ensure-water-lead-free/

Why we chose FAR

- Believed to contain each filling station type
- Primarily a freshman dormitory
- Large population
- All samples have primarily the same plumbing system

(Daily Illini, 2015)

Methodology - Water Fountain Locations in FAR

1. Unfiltered bottle filler in fitness center

2. Filtered bottle filler in basement hallway

Methodology - Water Fountain Locations in FAR

3. Filtered bottle filler outside the dining hall on the first floor

Methodology - Water Fountain Locations in FAR

(University Housing)

4. Unfiltered glass filler in the hallway on the second floor

Methodology - Sampling Plan

- Collected 12 total samples from each of the four fountains
 - Sampling occurred on 4/11, 4/16, and 4/18, collecting 4 samples from each filling station per day
 - 2 samples from first flush
 - 2 samples from second flush
- Collected 1 sample from a plastic water bottle
- TA Gemma Clark ran our samples through ICP-MS machine for 4/11 samples, SCS processed 4/16 and 4/18 samples

(Point of Use Water Quality Lecture Slides)

1

To determine the presence of a filter in each water bottle station, we tested the free chlorine levels of a sample from each location on 4/11 and 4/16

• Results show that only the FAR basement enhanced bottle filler has a working filter

Location	Filler Type	Free Chlorine Level (mg/L) Tested on 4/11
FAR Second Floor	Glass Filler	1.82
FAR Main Lobby	Filtered Bottle Filler (FLFS-C106)	1.48
FAR Basement	Filtered Bottle Filler (FLFS-C009)	0.01
FAR Gym	Unfiltered Bottle Filler	1.37

Location	Filler Type	Free Chlorine Level (mg/L) Tested on 4/16
FAR Second Floor	Glass Filler	1.37
FAR Main Lobby	Filtered Bottle Filler (FLFS-C106)	1.48
FAR Basement	Filtered Bottle Filler (FLFS-C009)	0.04
FAR Gym	Unfiltered Bottle Filler	1.44

When comparing the filtered and unfiltered samples, the filtered first floor lobby samples yielded the highest copper levels

Results of Samples Analysis

All of the samples measured a total lead content below the EPA action level of 15 ppb and the AAP action level of 1 ppb

Results of Samples Analysis

Utilizing box plots, our team can conclude that the unfiltered data is more precise than the filtered data for both lead and copper

Comparing the three types of water filling stations, the filtered enhanced bottle filler had the highest lead and copper levels

Results of Samples Analysis

Comparing first and second flush, the first flush had slightly higher total copper and lead levels

	% Error Copper	% Error Lead
Sample Date 4/11	1.73%	3.59%
Sample Date 4/16	54.5%	24.4%
Sample Date 4/18	54.5%	24.4%

Assuming:

- \$1,500 for filtered hydrostations
- \$1,000 for unfiltered hydrostations
- \$250-\$500 installation
- \$65-75 for filters
- \$500 annual labor costs

- 10 year design life
- 6% interest rate
- · Replacing filters twice a year

Unfiltered Hydrostation	Filtered Hydrostation Total
Total Cost	Cost
\$5,055	\$6,596

Design Results

- Posters around campus
- Reusable water bottle during move-in
- Installation of more unfiltered hydrostations

filling-station-with-single-ada-cooler-non-filtered

CIVIL AND ENVIRONMENTAL ENGINEERING

Conclusion

- Filling stations are all well within safe drinking water standards
- Recommend installing unfiltered hydrostations
- Promote the use of hydrostations through poster and reuseable bottles

Recommendations for Future Investigations

- Larger sample volume would give us more accurate results
- Test more glass fillers
- Test for different substances found in water to alleviate student concerns
 - Arsenic is a naturally occurring substance found in central Illinois water supplies

Citations

Cech, I., Smolensky, M. H., Afshar, M., Broyles, G., Barczyk, M., Burau, K., and Emery, R. (2006, February). Lead and Copper in Drinking Water Fountains – Information for Physicians. *Southern Medical Journal, 99(2),* 138. https://www.researchgate.net/publication/7267439 Lead and Copper in Drinking Water Fountains-Information for Physicians

EPA. (2023, November 28). "Lead and Copper Rule." https://www.epa.gov/dwreginfo/lead-and-copper-rule

iCap. (2023, August 14). "Reduce Single-Use Plastics." https://icap.sustainability.illinois.edu/project/reduce-single-use-plastics

Cusick, R., Clark, G. (2024). "Point of Use Water Quality and Analysis." CEE 449.

Irina Zhang (2015, October 4). "Campus dorms offer an array of features for different preferences" The Daily Illini. https://dailyillini.com/specialsections/2015/10/04/campus-dorms-offer-an-array-of-features-for-different-preferences/

Lanphear, B. P., Lowry, J. A., Ahdoot, S., Baum, C. R., Bernstein, A. S., Bole, A., Brumberg, H. L., Campbell, C. C., Pacheco, S. E., Spanier, A. J., & Trasande, L. (2016, July 1). *Prevention of childhood lead toxicity*. American Academy of Pediatrics. https://publications.aap.org/pediatrics/article/138/1/e20161493/52600/Prevention-of-Childhood-Lead-Toxicity?autologincheck=redirected

Massachusetts Department of Environmental Protection. (n.d.). *Copper and your health*. Mass.gov. https://www.mass.gov/info-details/copper-and-your-health#:~:text=How%20much%20copper%20is%20safe,this%20level%20is%20not%20exceeded.

World Health Organization. (n.d.). *Arsenic.* World Health Organization. https://www.who.int/news-room/fact-sheets/detail/arsenic#:~:text=Long%2Dterm%20exposure%20to%20arsenic,increased%20deaths%20in%20young%20adults.