You are here

Projects Updates for key objective: 43. Campus Power Contracts for Renewables

  1. FY21 Green Power Partnership Renewed

    F&S completed the renewal of our recognition as a Green Power Partner through the US Environmental Protection Agency. Green Power Partners of our scale now have to use renewable power for seven percent of their annual consumption. Fortunately, the FY21 green power supply for FY21 was 9%, which is a +1.72% increase from the FY19 supply of 7.28%. See attached file.

    Overview submitted: 

    The University of Illinois Urbana-Champaign (UIUC) is proud of its sustainability initiatives and success in achieving Illinois Climate Action Plan (iCAP) goals (https://icap.sustainability.illinois.edu/). The iCAP is the university’s strategic plan to meet the Climate Leadership Commitments, including being carbon neutral as soon as possible and building resilience to climate change in the local community.

    The Urbana campus on-site renewable energy portfolio meets more than 12 percent of annual electricity needs (https://fs.illinois.edu/services/utilities-energy/production/renewable-e...). UIUC’s Solar Farm 2.0 was energized in January 2021, producing 20,000 MWh/year. Combined with Solar Farm 1.0 and other rooftop and ground-mounted solar installations, the Urbana campus generates more than 27,000 MWh/year, ranking UIUC third amongst U.S. universities in on-site clean power production. Incorporating renewable energy continues to be a focus of new facility construction and major renovation projects. Most notably, the innovative Electrical and Computer Engineering (ECE) Building features 970 rooftop panels. Since production started in April 2019, 11 percent of all power supplied to the ECE Building has been from the array, while additional output is reserved for research and educational activities. In September 2016, the university also signed a ten-year wind power purchase agreement for 25 million kWh/year and the rights to the environmental attributes.

  2. UIC interest

    Associated Project(s): 

    Cynthia Klein-Banai, Assistant Vice-Chancellor and Director of Sustainability at UIC, provided this summary of UIC's interest in Solar Farm 3.0:

    "Rob Roman approached VC Coronado last fall about lending support to their efforts to amend the DUP in order to allow for renewable energy procurement, specifically through a Power Purchase agreement. The evaluation of the project was referred to the Office of Planning, Sustainability and Project Management and to Campus Utilities and Energy Services. It was determined that these groups were not only interested in supporting the amendment but also in participating in the RFP process to procurement 80,000 MWh/yr of renewable electricity through a Power Purchase agreement (aka Solar Farm 3.0) for a project in Illinois. On February 3, 2021, John Coronado, VCAS, Dave Taeyaerts, Associate Director of Planning, Sustainability and Project Management, and Cynthia Klein-Banai, Assistant Vice Chancellor and Director of Sustainability met with Chancellor Amiridis to gain his approval for this. Chancellor Amiridis said he was supportive of both the amendment change and engaging in the RFP process together with UIUC."

  3. Newsgazette Mailbag about campus renewables

    Renewable energy at the UI "How much power is each of the renewable (University of Illinois) sources generating? How many houses can each provide power for? Are there plans to add more than what we currently have? How many years does it take for the cost of each to be paid off? We have a growing interest in this and many homes now also have this."

    Morgan White, the UI's associate director of Facilities & Services for sustainability, has all your answers.

    As for power generation, she said that the UI's "on-campus solar arrays are now capable of producing over 25,000 megawatt-hours (MWh) per year and we purchase an additional 25,000 MWh/year from an off-campus wind farm in Illinois.

    "For a more comprehensive answer:

    "The (Illinois Climate Action Plan) 2020, objective 2.3.1 is: 'Use at least 140,000 MWh/year of clean power by FY25.' This objective is about clean power, which is different from clean thermal energy. As of 2020, there are three types of clean power options being pursued or used on campus.

    "1. Solar Energy on Campus: installing solar photovoltaic panels on campus property

    "2. Wind Energy on Campus: installing wind turbine generators on campus property

    "3. Power Purchase Agreements for Clean Energy: purchasing solar or wind power from off-campus

    "FYI, Solar Farm 2.0 is projected to produce 20,000,000 kWh/year. It began production at the end of January, so there will only be 5 of 12 months production in the FY21 totals (this current fiscal year)."

    As for the number of houses each can provide power for, White said, "At Facilities & Services, we use the US Energy Information Administration (EIA) for the average power use in an American home. It currently says, 'In 2019, the average annual electricity consumption for a U.S. residential utility customer was 10,649 kilowatthours (kWh).”

    "Thus, the FY20 clean power use on campus (30,635,993 kWh) was the equivalent of the power needed for 2,876 houses. Once Solar Farm 2.0 is operating for an entire year, that will be about 50,000,000 kWh/year of clean power use on campus, which is the equivalent to the power needed for 4,717 houses."

    And about whether more generation will be added, she said: "The recently released Illinois Climate Action Plan 2020 (iCAP 2020) includes a goal for increasing clean power use to 140,000 MWh/year by FY25. We are currently having internal discussions at the University of Illinois about initiating a large off-campus solar power purchase agreement to meet this goal. We are also continuing to pursue clean thermal energy solutions, such as geothermal. Additionally, large construction projects on campus are required by the state law to be LEED certified, and this will often entail the addition of clean energy systems for individual buildings."

    The payback period for each of these systems varies widely due to several factors, she said.

    "For example, the geothermal system for the Campus Instructional Facility is projected to pay for itself in 28 years, while Solar Farm 2.0 is saving money in year one," said White. "For local projects off-campus these programs are very helpful: the Solar Urbana-Champaign program typically finds solar installations to pay for themselves in six or seven years, and the Geothermal Urbana-Champaign program typically finds a geothermal system at a residential home can pay for itself within 10 years."

    https://www.news-gazette.com/toms-mailbag/toms-mailbag-feb-12-2021/artic...

Pages